Algorithms overview

Classic analog waveforms

Wave	Description	Timbre	Color
CSAW	CS-80 imperfect saw	Notch width	Notch polarity
/\/!	Variable waveshape	Waveshape	Distortion/ filter
/ /	Classic saw- tooth/square	Pulse width	Saw <-> square
SANC	2 square VCOs with hardsync	VCO fre- quency ratio	VCO balance
FOLD	Sine/triangle into wavefolder	Wavefolder amount	Sine <-> triangle

Digital synthesis

_ _ _ _	2 detuned harmonic combs	Smoothness	Detune
/ / X3 X3	Triple saw and triple square	Osc. 2 detune	Osc. 3 detune
RING	3 ring-modulat- ed sine waves	2/1 frequen- cy ratio	3/1 frequen- cy ratio
ΛΛΛΛ	Swarm of 7 sawtooth waves	Detune	High-pass filter
///_ _	Comb filtered sawtooth	Delay time	Neg./pos. feedback
TOY:	Low-fi, circuit- bent sounds	Sample reduction	Bit toggling

ZLPFDirect synthesisCutoffWaveshapeof low-pass fil-
tered waveformfrequency

ZPKF. ZBPF. ZHPF are variants of *ZLPF* with peaking, band-pass, and high-pass filters

Vocal synthesis and formants

Sawtooth with 2-formants	Formant 1 frequency	Formant 2 frequency
Speaking-toy vowel synthesis	a, e, i, o, u	Gender
Vowel synthesis	a, e, i, o, u	Gender
2-operator FM	Modulation index	Frequency ratio
2-operator FM with feedback	Modulation index	Frequency ratio
Chaotic 2-operator FM	Modulation index	Frequency ratio
	Sawtooth with 2-formants Speaking-toy vowel synthesis Vowel synthesis 2-operator FM with feedback Chaotic 2-operator FM	Sawtooth with 2-formantsFormant 1 frequencySpeaking-toy vowel synthesisa, e, i, o, uVowel synthesisa, e, i, o, u2-operator FM with feedbackModulation indexChaotic 2-operator FMModulation index

Physical simulations

BELL, DRUM	Bell and metallic drum simulations	Decay	Inharmo- nicity
PLUK	Plucked string	Decay	Plucking position
BOLUD	Bowed string	Friction	Bowing position

BLOW	Reed and flute	Air pressure	Instrument
FLUT	simulations		geometry

Wavetables

WTBL	21 wavetables	Smooth wavetable position	Quantized wavetable selection
WMAP	16x16 waves	X position	Y position
LULIN	Linear wavetable scanning	Wavetable position	Interpola- tion quality
ШТХЧ	Quad wavetable synthesis	Wavetable position	Chord type

Noise

	NOIS	Tuned noise (2-pole filter)	Filter resonance	Response, LP to HP
	TWNO	Noise sent to 2 resonators	Resonance	Resonators frequency ratio
	CLKN	Clocked digital noise	Cycle length	Quantization
	CLOU	Sinusoidal gran- ular synthesis	Grain density	Frequency dispersion
	PRTC	Droplets granu- lar synthesis	Grain density	Frequency dispersion
	OPSK	Modem noises	Bit-rate	Modulated data

Macro oscillator

Installation

Braids requires a **-12V / +12V / +5V power supply** (2x8 pin connector). The ribbon cable connector must be aligned so that the red stripe of the ribbon cable (-12V) is on the same side of the module's power header as the "Red stripe" marking on the board.

The power consumption is as follows: -12V: 15mA; +12V: 15mA; +5V: 85mA.

Online manual and help

The full manual can be found online at mutable-instruments.net/modules/braids/manual

For help and discussions, head to mutable-instruments.net/forum/

Calibration

Calibrating Braids is as easy as playing a C2 and a C4 note from an accurate **MIDI>CV** interface or **CV source**. Read more about this in the online manual!

Front panel

Controls

A. Display and encoder - when the module starts, they show and modify the oscillator model.

B. C. Fine and coarse frequency controls.

D. FM attenuverter. Adjusts the amount and polarity of frequency modulation from the FM input.

E. F. Timbre control, and **timbre modulation attenu-verter**. Principal dimension of sound motion and wave-shaping.

G. Color. Secondary dimension of waveshaping. The function of Timbre and Color depends on the oscillator type. Refer to the table on the other side!

Inputs and Outputs

1. Trigger input. Resets the oscillator phase. For the physical modeling algorithms this input needs to be triggered to "excite" the oscillator (or it won't produce any sound).

2. V/Oct. Main frequency control input, with V/Oct scale.

3. 4. 5. Frequency, timbre, and color modulation CV inputs.

6. Audio output.

Settings

Click the encoder to display a list of settings. Scroll through the settings and click to modify one of them. Once the value has been modified, click to confirm and get back to the menu. Selecting the first option (*LUAVE*) saves all the current settings in memory and brings you back to the module's initial state (oscillator model selection).

An overview of the available settings:

BITS / RATE is the bit-depth and sample rate of the audio output, for digital grit and crunchiness!

QNTZ applies a semitone or quartertone quantization to the V/Oct input.

FLAT/DRFT/SIGN create various VCO-like instabilities.

TRIG allows a simple AD envelope (6 preset shapes) to shape the sound whenever a trigger is received on the TRIG input.