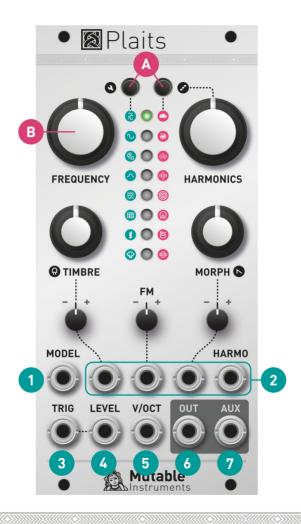


About Plaits

Plaits is a digital voltage-controlled sound source capable of sixteen different synthesis techniques. Plaits reclaims the land between all the fragmented islands of sound produced by its predecessor, Braids. Its built-in low-pass gate (LPG) and decaying envelope generator allows it to be used as a self-contained voice, in particular for percussive hits.

Front panel


Controls

A. Model selection buttons and LEDs displaying the active model. Each button cycles through a bank of 8 models. The second bank is focused on noisy and percussive sounds.

B. Coarse frequency control. By default, it covers a range of 8 octaves, but it can be narrowed down to 14 semitones (refer to the **FREQUENCY knob range** section).

C. D. E. Model-dependent tone controls. Their actual function varies from model to model. In general, **TIMBRE** sweeps the spectral content from dark/sparse to bright/dense, **MORPH** explores lateral timbral variations and **HARMONICS** controls the frequency spread or the balance between the various constituents of the tone.

F. Attenuverters for the **TIMBRE**, **FM** and **MORPH** CV inputs. When the corresponding CV input is left unpatched and the trigger input [3] is patched, the attenuverter adjusts the modulation amount from the internal decaying envelope generator. When unplugging a CV input, and if the trigger input is patched, remember to reset the attenuverter to 12 o'clock if you do not want the internal envelope to take over!

Inputs and Outputs

1. Model selection CV input. When this CV input is modulated, two LEDs are lit: the steadily lit LED indicates the current model, and the slowly blinking LED indicates the central value, which would be obtained with a CV of OV and which is still modifiable with the buttons [A].

Note that when the trigger input [3] is patched, model changes occur only whenever a trigger is received.

2. CV inputs for the timbre, frequency, morph and harmonics parameters.

3. Trigger input. Serves four percussive purposes:

- Triggers the internal decaying envelope generator.
- Excites the physical and percussive models.
- Strikes the internal low-pass gate (unless the **LEVEL** CV input [4] is patched).
- Samples and holds the value of the **MODEL** CV input.

4. Level input. Opens the internal low-pass gate, to simultaneously control the amplitude and brightness of the output signal. Also acts as an accent control when triggering the physical or percussive models.

5. V/Oct CV input. Controls the fundamental frequency of the sound, from -3 to +5 octaves relative to the root note set by the coarse frequency knob **[B]**.

6.7. Outputs. The **AUX** output carries a variant, sidekick, or by-product of the main signal produced on **OUT**.

Adjusting the internal LPG and envelope

Hold the first button (A) and:

- Turn the **TIMBRE** knob to adjust the response of the LPG, from VCFA to VCA.
- Turn the **MORPH** knob to adjust the ringing time of the LPG and the decay time of the internal envelope.

The value of both settings are represented by 4 yellow LEDs.

Adjusting the FREQUENCY knob range

Hold the second button (A) and turn the **HARMONICS** knob to select the range of the **FREQUENCY** knob. The first 8 settings correspond to **C0 +/- 7** semitones, **C1 +/- 7** semitones, and so on. The last setting, with all LEDs lit, corresponds to the **full 8-octave range** from C0 to C8.

Synthesis models

🔁 Pair of classic waveforms

Virtual-analog synthesis of classic waveforms.

HARMONICS: detuning between the two waves.

TIMBRE: variable square, from narrow pulse to full square to hardsync formants.

MORPH: variable saw, from triangle to saw with an increasingly wide notch (Braids' CSAW).

AUX: sum of two hardsync'ed waveforms, the shape of which is controlled by **MORPH** and detuning by **HARMONICS**.

A narrow pulse or wide notch results in silence!

• Waveshaping oscillator

An asymmetric triangle processed by a waveshaper and a wavefolder.

HARMONICS: waveshaper waveform.

TIMBRE: wavefolder amount.

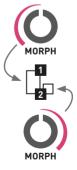
MORPH: waveform asymmetry.

AUX: variant employing another wavefolder curve.

🔁 Two operator FM

Two sine-wave oscillators modulating each other's phase.

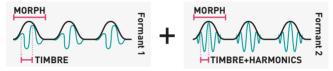
HARMONICS: frequency ratio.


TIMBRE: modulation index.

MORPH: feedback, in the form of operator 2 modulating its own phase (past 12 o'clock, rough!) or operator 1's phase (before 12 o'clock, chaotic!).

AUX: sub-oscillator.

🐼 Granular formant oscillator


Simulation of formants and filtered waveforms through the multiplication, addition and synchronization of segments of sine waves.

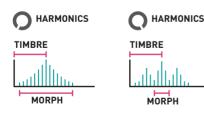
HARMONICS: frequency ratio between formant 1 and 2.

TIMBRE: formant frequency.

MORPH: formant width and shape.

AUX: simulation of filtered waveforms by windowed sine waves – a recreation of Braids' Z*** models. **HARMONICS** controls the filter type (peaking, LP, BP, HP).

🐯 Harmonic oscillator


An additive mixture of harmonically-related sine waves.

HARMONICS: number of bumps in the spectrum.

TIMBRE: index of the most prominent harmonic.

MORPH: bump shape - from flat and wide to peaked and narrow.

AUX: variant including only the subset of harmonics present in the drawbars of a Hammond organ.

Wavetable oscillator

Four banks of 8x8 waveforms, accessed by row and column, with or without interpolation.

HARMONICS: bank selection. 4 interpolated banks followed by the same 4 banks, in reverse order, without interpolation.

TIMBRE: row index. Within a row, the waves are sorted by spectral brightness.

MORPH: column index.

AUX: low-fi output.

Chords

Four-note chords, played by VA or wavetable oscillators.

HARMONICS: chord type.

TIMBRE: chord inversion and transposition.

MORPH: waveform. The first half of the knob goes through a selection of string-machine like raw waveforms, the second half of the knob scans a small wavetable.

AUX: root note of the chord.

Vowel and speech synthesis

A collection of speech synthesis algorithms.

HARMONICS: crossfades between formant filtering, SAM, and LPC vowels, then goes through several banks of LPC words.

TIMBRE: species selection, from Daleks to chipmunks.

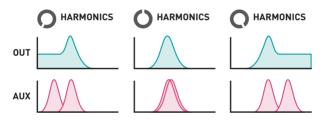
MORPH: phoneme or word segment selection. Patch the trigger input [3] to trigger the utterance of a word, use the **FM** attenuverter to control the intonation and the **MORPH** attenuverter to control speed.

AUX: unfiltered vocal cords' signal.

Granular cloud

A swarm of 8 enveloped sawtooth waves. HARMONICS: amount of pitch randomization. TIMBRE: grain density. MORPH: grain duration and overlap. AUX: variant with sine wave oscillators.

Filtered noise


Variable-clock white noise processed by a resonant filter.

HARMONICS: filter response, from LP to BP to HP.

TIMBRE: clock frequency.

MORPH: filter resonance.

AUX: variant processed by two band-pass filters, with their separation controlled by **HARMONICS**.

🛞 Particle noise

Dust noise processed by networks of all-pass or band-pass filters.

HARMONICS: amount of frequency randomization.

TIMBRE: particle density.

MORPH: filter type – reverberating all-pass network before 12 o'clock, then increasingly resonant band-pass filters.

AUX: raw dust noise.

Inharmonic string modeling Modal resonator bank

For your own pleasure, a mini-Rings! When the **TRIG** input is not patched, the resonator is excited by dust noise.

HARMONICS: amount of inharmonicity, or material selection.

TIMBRE: excitation brightness and dust density.

MORPH: decay time (energy absorption).

AUX: raw exciter signal.

Analog bass drum model

HARMONICS: attack sharpness.

TIMBRE: brightness.

MORPH: decay time.

AUX: emulation of another classic bass drum circuit.

Analog snare drum model

HARMONICS: balance of the harmonic and noisy components. TIMBRE: balance between the different modes of the drum. MORPH: decay time. AUX: emulation of another classic snare drum circuit.

😂 Analog high-hat model

HARMONICS: balance of the metallic and filtered noise.

TIMBRE: high-pass filter cutoff.

MORPH: decay time.

AUX: variant with a different flavor of tuned noise based on ring-modulated square waves.

Note: all the models listed on this page employ their own decay envelope and filter. The internal LPG is disabled for them.

Installation

Plaits requires a **-12V/+12V** power supply (2x5 pin connector). The red stripe of the ribbon cable (-12V side) must be oriented on the same side as the "Red stripe" marking on the module and on your power distribution board.

The module draws **50mA** from the **+12V rail**, and **5mA** from the **-12V rail**.

Online manual and help

The full manual can be found online at mutable-instruments.net/modules/plaits/manual For help and discussions, head to mutable-instruments.net/forum

FECCE Please refer to the online manual for detailed information regarding compliance with EMC directives